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FOREWORD

This report was prepared by Cornell Aeronautical Laboratory, Inc.
under USAF Contract No. AF 33(616)-L2 and covers work during the
period of March 1952 to February 1955, The contract was initiated
under Project No. 7360 "Materials Analysis and Evaluation Techniques",
Task No. 7360L "Fatigue Properties of Structural Materials", formerly
RDO No. 61L~16, and was administered under the direction of the Mate-
rials Laboratory, Directorate of Research, Wright Air Development
Center, with Lt. C. L. Harmsworth acting as project engineer.
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ABSTRACT

An investigation has been conducted to evaluate the effects of
cyclic loading and load frequency on the elevated temperature creep
rupture properties of several jet engine sheet materials, Specifi-
cally the behaviors of low carbon N-155, type 321 stainless steel
and Inconel X were studied, when exposed to various combined steady
and cyclic stresses at various stress amplitudes and temperatures
within a wide range of test frequencies,

Pata for selected static and dynamic test conditions are pre=-
sented in various tabular and chart forms to illustrate the influence
of direct fluctuating stresses on the creep and rupture character-
istics of the test alloyse These data demonstrate that the static
load high temperature creep and rupture behavior of N-155, type 321
stainless steel and Inconel X are not always altered by the super-
position of cyclic stresses; however, damage may be accelerated or
retarded depending upon temperature, static stress level and the
frequency of the cyclic stress component,

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

M. R. WHITMORE
Technical Director
Materials Laboratory
Directorate of Research
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INTRODUCTION

In recent years, the elevated-temperature properties of alloys
suitable for jet-engine applications have been the subject of rather
intensive study. While most laboratory investigations have been
concerned with defining the creep behavior of alloys under the influ-
ence of constant loads and constant temperatures, some information
is available regarding the effects on creep generated by temperature
and stress fluctuations which simulate conditions encountered in
service. Results of creep deformation and rupture determinations
under cyclic or intermittent temperatures and stresses were presented
in a symposium at the Fifty-Seventh Ammual meeting of the American
Society for Testing Materials (1)¥ to illustrate how constant stress
and constant temperdture behaviors of metals are modified by essen-
tially slow square wave type cycles.

In addition to the intermittent-type simulated-service tests,
attention has been directed toward the high-temperature behavior
of metals when dynamic sinusoidal type stresses, such as those
generated by vibrations, are present., A preliminary investigation
of the influence of superimposing a fluctuating stress about a mean
stress on creep deformation was made at Cornell Aeronautical Lab-
oratory, Inc. in 1948 which showed the important relationship of
creep rate with temperature and frequency of stress fluctuation.
Discussion of this investigation was presecnted at a Project SQUID
Conference (2). Iazan (3) and Manjoine (L) at the 1949 annual
meeting of the American Society for Testing Materials demonstrated
that materials subjected to cyclic stresses about fixed mean stresses
at 3600 and 1200 cycles per minute, exhibited deformation effects
different from those under static conditions. Gillig and Guarnieri
(5) working with Armmco iron at 800 and 1000°F have shown that the
superposition of a cyclic load upon a static tensile load in a long-
time creep test will not necessarily cause deformation to proceed
at an increased rate, indicating that the cyclic load characteristics
are important in governing deformation behaviors of materials.

The lack of appropriate data, dealing with the high-temperature
behavior of materials exposed to stress fluctuations, has imposed a
handicap on the design engineer from the standpoint of assigning
limiting-stress values to heated members subjected to cyclic tensile
stresses in jet-engine service, The design criteria for high-temper-
ature alloys, subjected to stress fluctuations, have been for the
most part based on laboratory test performances of these alloys under
the separate effects of static creep and fatigue with major consid-
eration given to that property which appears to be more seriously
affected under the operating conditions. Actually, the operation of
Jjet propelled aircraft is such as to include the combined effects of
creep and fatigue. The extent to which these phenomena are active

¥See bibliography.
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in a single member exposed to dynamic loads and their relative influ-
ences in promoting failure will, of course, depend on a combination
of factors of which temperature, mean stress, and frequency and ampli-
tude of the fluctuating stress are most important.

For materials subjected to direct tensile stressing, it has
been the intent of this program to establish the influence of the
cyclic stress variables, specifically frequency of stressing, as re-
lated to temperature and mean stress in promoting damage and to pro-
vide representative dynamic stressing data which may be applicable
for similar conditions of service loading, Preliminary to this
determination, however, attention was devoted to devising cyclic-
load creep testing techniques with particular emphasis on the develop-
ment of methods and equipment capable of providing a variety of sinus-
oidal direct stress amplitude and frequency patterns which can be
controlled and maintained for relatively long periods of time.

WADC TR 55-226 2



TEST MATERIALS AND PROGRAM

Three alloys, all in sheet form, low carbon N-155, Inconel X
and type 321 stainless steel, were selected for this investigation
because of their high-temperature applications as jet-engine mate-
rials. The certified chemical analyses of these alloys, furnished
by the Haynes Stellite Company, International Nickel Company, Inc.
and American Rolling Mill Company respectively, are illustrated in
Table 1 below.

TABIE 1
CHEMICAL COMPOSITIONS OF TEST ALLOYS

N-155 Inconel X 321 Stainless Steel

c 0.13 0.0L 0,07
Si 0.56 0.30 0.50
Mn 1.L5 0.7 1.56
S 0,009 0,007 0.012
P 0,023 - 0,023
Fe Balo 6. 83 Bal,
Ni 19,26 72463 9,47
Cr 21,01 14,86 17.88
Co 20.17 - -

Mo 3.16 - -

W 2.11 - -

Al - 1,00 -

Cu - 0.09 -

Ti - 20’-‘2 0 066
Ta + Cb 0. 86 1009 -

Low carbon N-155 sheet of 0,0LL-inch thickness was tested in
the "as-received® condition; final mill processing before shipment
consisting of an anneal at 2150°F for ten mimtes, followed by air
cooling.

Inconel X sheet of O,0LL-inch thickness was tested after aging
at 1550°F for 2l hours, air cooling and subsequently aging at 1300°F
for 20 hours, followed by air cooling,

Type 321 stainless steel sheet of 0.049-inch thickness was
tested in the "as-received'condition mill processed, before ship~
ment, to a 2D finish.

The room temperature strength properties of these alloys as
determined for the longitudinal direction are presented in Table 2,
as follows:

WADC TR 55-226 3
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TABLE 2
ROOM TEMPERATURE MECHANICAL PROPERTIES OF TEST ALLOYS

Rockwell 0.2% Yield Ultimate Tensile % Blongation

Alloy Hardness Strength PSI  Strength PSI in 2 Inches
Low Carbon  RB 90 58,200 118, 500 56,0
N-155 RB 120, 800 56,0
Inconel X T 31 TGG, 500 T‘EB,SW 2245

_ RC 30 168, 300 23eD>
Type 321 RB Th 36, 200 87, 800 54,0
Stainless RB 15 35, 300 89, 200 8340
Steel

All test alloys were investigated at 1500°F with additional
testing on low carbon N-155 and Inconel X at 1350°F. Conditions
of sinusoidal direct tensile stressing were used to compare the
effects of frequency and amplitude of superimposed tensile stresses
on their high-temperature creep and rupture properties with those
obtained by static loading. In the test program, fluctuating ten-
sile stresses equal to + O, 25, and 67% of selected static stresses
were superimposed upon the various static stresses at frequencies
of 0, 1.5, 115, 3600, and 1L,L400 cycles per minute to represent a
rather wide range of the frequency variable,

TEST EQUIPMENT AND PROCEDURE

Static Test Procedure

The initial portion of this investigation concerned with the
determmination of reference data has been performed with the use of
the conventional lever-type creep apparatus, Test temperature is
maintained with a resistance wound creep furnace provided with
appropriate shunts to adjust temperature distribution in the top,
middle, or bottom furnace sections as required and regulated to
provide low or high voltage input to the furnace by a conventional
potentiometric temperature controller, With this system of control
and adjustment, the test temperature is maintained within 1limits
of £ 39F of the nominal test temperature over a two-inch gage
section for the duration of the test, Temperature measurements are
made at the top, middle, and bottam gage section by calibrated
chromel-alumel thermocouples wired to the specimen at those positions
and shielded from furnace radiation by asbestos corde A precision
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potentiometer, accurate to within one-half of 19F is used to indicate
the test section temperature and to serve as a guide for temperature
adjustment,

Specimen strain is measured by a set of extensometers attached
to a two-inch specimen gage section. These extensometers engage
cantilever beams to which resistance strain gages are cemented, The
displacement of the extensometers, being a direct measure of the
creep deformation, is transmitted to the cantilever pickup system and
is detected as an unbalance in an electrical bridge circuit., Precali-
bration of the beams and the bridge circuit permits convenient and
accurate conversion of the generated bridge unbalance into creep
strain, Contimuous record of the strain is made on a Dynalog type
strain recorder with a long time accuracy of 0,0003 inch and a sen-
sitivity of 0,00003 inch per inch, The method of strain measurement
is illustrated in Figure 1 which shows the essential features in the
specimen-extensometer-thermocouple assembly,

Low-Frequency Cyclic-Load Test Procedure

The test equipment to carry out the low frequency cyclic-load-
ing portion of the investigation consists basically of the conven-
tional lever type static-creep test apparatus to which have been
added facilities for the superposition of fluctuating stresses on
the test specimen, Temperature control and deformation measurement
techniques identical to those described for the static test pro-
cedure were employed.

Since the low frequency tests (11.5 and 115 cpm) are within
the range where inertia effects of moving components are of minor
significance, standard lever type creep units were modified to
allow superimposed cyclic loads to be applied to the lever through
a spring driven by an eccentric at the appropriate frequency. In
the case where creep deformation occurs, some provision must be made
to maintain the spring deflection constant as the loading beam is
displaced, To accomplish this compensation for creep, a take-up
motor which becomes energized through the movement of the beam has
been installed in the loading circuit to control spring deflection.

Accurate measurement of the dynamic load is made with SR~k
resistance strain gages cemented to a room temperature link below
and in series with the test specimen. With the use of appropriate
strain-analyzing instrumentation and static-load calibrations prior
to the start of each test, the stress pattern in the specimen is
determined and adjusted. The essential features of the test appa-
ratus are illustrated schematically in Figure 2 to show the method
of stress cycling and the various control and stress measuring
instrumentation employed.

WADC TR 55-226 5



High-Frequency Cyclic-Load Test Procedure

In conducting the high-frequency cyclic test program, equipment
was designed incorporating the temperature control and strain measur-
ing features described in the static test procedure. For this series
of tests which required relatively large loads to be cycled at 3,600
and 1h, 400 cycles per mimute, test units were constructed employing
electromagnetic vibrators as the cyclic stress source.

As in the low-frequency test program, stress adjustment and
measurement are determined by a room-temperature strain link placed
in series with the specimen. By a direct static calibration, prior
to commencing a test, changes in gage resistance are measured by a
strain analyzer and the desired mean load is then applied to the
specimen through a caged helical compression spring. Dynamic loads
also determined by the strain link, are supplied by the electro-
magnetic vibrators connected by flexure rods to the specimen and
sprirg assembly. By adjusting the amount of mass in series with the
test specimens, cyclic load applications can be regulated to produce
the superposition of large amplitude sinusoidal stresses in the
neighborhood of the resonant frequency of the mechamical system.

Because creep deformation of the specimen will affect the static
load component imposed on a specimen by the spring dynamometer, an
automatic creep compensator is required in the loading system. The
strain link, in addition to serving its purpose for determining the
mean and dynamic stresses applied to the specimen, is used, in con-
Junction with a combined strain recorder-controller, to energize
the creep compensator for maintaining a desired mean stress condition
throughout any test. Figure 3 presents schematically the various
equipment and instrument crelationships in conducting these high fre-
quency dynamic creep tests (6).

TEST RESULTS

Low Carbon N-155

To demonstirate the influence of cyclic stress components on the
creep and rupture behavior of low carbon N-155, data illustrating
its static (constant load-constant temperature) behavior were deter-
mined to provide a necessary reference for comparison., These static
base line data are summarized in Table 6 for various selected stresses
at both the 1350 and 15000F temperature levels.

WADC TR 55-226 6



The creep and rupture characteristics of N-155 under conditions
of positive sinusoidal cyclic stressing through the frequency range
of 11.5 to 14,400 cycles per mimute and cyclic stress amplitudes of
+ 25 and 67% at 1350 and 1500°F are presented in Tables 7 through 10,
Graphic representation of the 13500F data showing the relationship
of mean stress and time, as affected by stressing frequency and
compared with static behavior for selected deformation levels and
rupture, are illustrated in Figures L and 5 for the + 25 and 67%
cyclic stress amplitudes respectively, Similar mean  stress-time
relationships comparing the 1500°F static and + 25 and 67% cyclic
stress amplitude characteristics are presented in Figures 6 and 7
respectively.

Inasmuch as stress amplitude constitutes another important
variable controlling the cyclic-load, high-temperature deformation
and rupture properties of materials, the effects of amplitude can
be shown by replotting the test data at constamt frequencies and
constant temperatures.s Far the range of cyclic-stress amplitudes
from 0 (static) to + 67% of mean load, curves relating mean tensile
stress and alternating tensile stress are graphically illustrated
in Figure 8 at 135 and in Figure 9 at 15009F, Presented in this
form, the data not only illustrate the influence of cyclic stress
amplitudes on the creep and rupture characteristics of low carbon
N-155, but also provide a very convenient guide for selecting limit-
ing steady and cyclic stress combinations,

The over-all effect of stress cycling on the rupture character-
istics of low carbon N-155 can be demonstrated by establishing a
ratio of cyclic mean-rupture stress to static-rupture stress for
specific rupture times up to 500 hours, This ratio when less than
one signifies that the cyclic stress component induces a damaging
effect in excess of the static mean stress on the test alloy and
when greater than one indicates that damage is retarded by cyclic
stressing, For the time range under consideration and the par-
ticular combinations of temperature and cyclic stress, these ratios
are summarized in Table 3, page 8.
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TABIE 3

MEAN STRESS RATIOS TO PRODUCE RUPIURE OF N-155 ALLOY
UNDER CYCLIC LOAD AS COMPARED TO STATIC LOAD

Ratio Cyclic Mean Rupture otress

Cyclic Stress to Static Rupture Stress

Temp. Amplitude Frequency 10 20 50 100 200 500
op g CPM Hours Hours Hours Hours Hours Hours
115 0,99 1,00 1,00 0.96 0.94 0,92%

+25 3,600 1.00 0,97 0497 0,97 0.97 1.02%

1350 1L, L0O 0,86 0.83 0.82 0,83 0,80 0,82
115 0.70 0,69  0.7L 0.75 0.77 0O.BL

67 3,600  0.85% 0.81% 0.82 0,88 0.90 0,95%

11.5  0.98% 0.95% 0,94 0,93 0.93 0.94

+ 25 115 1.03 1,00 1,03 1.05 1.04 0.99

1500 3,600 1,0 1.02 1.03 1,01 1.03 1l.01

11,, 1,00 0.90% 0,87 0,89 0,92 0,87 0.79
TS 0.87  0.85  0.85 0.90 0.00 0.88
+ 67 3,600 0,85 0,86 0,93 0.92 0.86 0,79

¥Ratio calculated from extrapolated stress values.

From the above tabulation of ratios, the variables of tempera-
ture, cyclic stress, amplitude and cyclic stressing frequency can
very appropriately be analyzed according to their respective influ-
ences on the rupture characteristics of the test alloy. It can be
seen, for example, at both the 1350 and 1500°F temperature levels,
that for constant stress amplitudes of + 25% cycled at 11.5, 115,
and 3600 cycles per minute, there appears to be no significant
change in the mean stress to rupture values throughout the time
range in that the ratios fall within the range of reproducibility
in creep-rupture testing. When stressing frequency at the constant
+ 25% amplitude is increased to 1l,L00, the test alloy N-155 dis-
plays an appreciable decrease in ecyclic mean stress to produce
rupture in the equivalent time, and this decrease appears to become
more pronounced with increasing time to rupture., Iikewise, at fixed
frequencies for both temperatures, increasing cyclic stress ampli-
tude from £ 25 to + 67% results in a substantial decrease at a
definite time level to rupture of the cyclic mean stress which tends
to diminish with increasing rupture time at 1350 and remains rela-
tively uniform at 1500°F, It is further observed that the + 67%
cyclic component at 1350°F is more damaging when applied at 115 cpm
than at 3600 cpm and more damaging than the 1500°F + 674 cyclic
component applied at the same 115 cpm test frequency.

WAIDC TR 55-226 8



Because alloys generally exhibit varying degrees of sensitivity
to stress in their creep-deformation and rupture behavior with tem~-
perature changes, it might be expected that as temperature is varied,
the effect of cyclic stressing will be to alter the mode of damage
from a time-dependent to a cyclic-dependent type or vise versa. In
this event, an analysis of the test results from a standpoint of
failure according to the number of stress cycle applications appears
to be appropriate. These data summarizing the stress and cycle
dependent characteristics at both 1350 and 1500°F are presented in
Table 11 and are graphically represented in Figure 10 as typical S-N
curves relating the number of cycles to failure with the maximum
stress developed in the stress cycle. Examination of the curves
over the frequency range up to 3600 cycles per minute indicates that
at both the 1350 and 1500°F temperature levels rupture is predomi-
nantly time-dependent. In the frequency range between 3600 and
14,400 cycles per minute there is a trend toward cyclic-dependency
which is suggested by the near matching of the + 25% amplitude lines
at these frequencies, Along with these observations it might appear
off hand, due to the almost consistent upward displacement of the
+ 67% amplitude lines over the corresponding + 25% amplitude lines,
that improvement is induced by increasing stress amplitude. It
must be pointed out, however, that for the same maximum stress levels,
mean stress for the + 67% amplitude condition must necessarily be
less than that of the * 25% amplitude condition, thus creating a less
severe creep condition for the 67% amplitude tests than for the 25%
amplitude ones at the same maximum stress level,

Inconel X

Like low carbon N-155, Inconel X was also subjected to cyclic
stress conditions in the 1350 to 15009F temperature range. Prior
to conducting the cyclic stress program on this alloy, the static
stress base line creep-rupture data were detemmined at the 1350
and 1500°F temperature levels to provide the reference by which
cyclic stressing effects could be evaluatede These reference
creep-rupture data are summarized in Table 12 for the various se=
lected static stresses applied.

The cyclic creep and rupture behaviors of Inconel X, for the
+ 25 and 67% cyclic stress amplitude series applied at frequencies
of 115, 3600, and 1kL,L400 cycles per minute and temperatures of
1350 and 1500°F, are presented in Tables 13 through 15. These data
are graphically illustrated in the conventional mean stress-time
charts, along with the appropriate static results, for several
amounts of total deformation and rupture at constant cyclic stress
amplitude and constant temperature in Figures1l through 1L to
demonstrate the influence of the frequency factor on the high-
temperature deformation and rupture characteristics of Inconel X,
In addition, the relationship of mean stress and alternating stress
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for the static and cyclic conditions of testing are presented in
Figures 15 and 16 to illustrate the manner in which cyclic stress
amplitude affects the static behavior of this alloy at the selected
frequencies,

Again, by expressing the time-dependent rupture characteristics
of Inconel X in terms of cyclic mean rupture stress to static rupture-
stress ratios, the variables of temperature, stress amplitude, and
stressing frequency can be analyzed either as to their individual or
combined influences in promoting rupture throughout a definite time
range. These mean rupture-stress ratios are summarized in Table L
as follows:

TABIE L

MEAN STRESS RATIOS TO PRODUCE RUPTURE OF INCONEL X
UNDER CYCLIC LOAD AS COMPARED TO STATIC LOAD

Ratio Cyclic Mean Rupture Stress

Cyclic Stress to Static Rupture Stress

Temp. Amplitude Frequency 10 20 50 100 200
oF b4 CPM Hours Hours Hours Hours Hours
£ 25 3, 600 1,00 0,94, o0.94 0.94 0.98

1350 1L, Loo __1.23 1,03
. 67 115 0.7 0.73 0.77 0.81 0.87

bt 3,6m 1019* 009,4
115 1.00 0,97 0.97 0,98 1,04%*

+ 25 3,600 1.00 0,95 0.92 0.98 1.06%

1500 1y, 4,00 0.80% 0.78 0,83 0.9h 0,99

.+ 67 115 0.75 0.16 O, . .
- 3, 600 0,90 0,88 0.89 0,88 0,95

*Ratio calculated from extrapolated stress values.

At both temperatures the stress ratios indicate that the +
25% cyclic stress component imparts little or no effect on static
rupture stress at stressing frequencies of 115 and 3600 cycles per
minute, However, at 1500°F when the + 25% cyclic stress amplitude
is applied at 1l,L00 cycles per mimute a substantial loss in rup-
ture strength occurs although the effect diminishes with increased
rupture times For the + 67% stress amplitude series at 1500°F,
the fluctuating stress component has the effect of promoting damage
at both the 115 and 3600 cpm frequencies; however, at the 115 cpm
frequency, damage is reduced with time while at 3600 cpm it appears

WADC TR 55-226 10



to be somewhat uniform and independent of time.

The 1350°F characteristics of Inconel X under a + 25% stress
amplitude cycled at 1L,L00 cycles per minute and + 67% stress
amplitude at 3600 cycles per minute are particularly significant
in that the ratios show improvement in rupture behavior associated
with cyclic stressing with the effect diminishing with test time,
This behavior for Inconel X does not follow the usual trends with
regard to mean rupture stress and time exhibited for the other
conditions of cyclic stressing and may imply that at 1350°F for
these very high strain rates, the alloy is displaying a sensitivity
to the mumber of stress cycle applications.

To illustrate the response of the test alloy to stress cycles
or more specifically to the number of stress cycles, the test data
have been compiled in Table 16 which permits an analysis of the
rupture characteristics on a cyclic-dependent basis. The typical
S-N curves relating the maximum stress developed in the cycle with
cycles to failure for all conditions of test frequency, stress
amplitude, and temperature are summarized in Figure 17, It is
apparent from the large spread in the 115 and 3600 cpm frequency
lines at 15000F that rupture is essentially time dependent., However,
at the high rates of straining generated by stressing at the 1l,L00
cpm frequency at 1500 and 13500F and the superposition of the + 67%
cyclic component at 3600 cpm and 1350°F, the combinations of time
and mumber of applied cycles seem to become more significant in
promoting rupture.

Type 321 Stainless Steel

In addition to the previous test alloys, type 321 stainless
steel was exposed to various cyclic and steady stress conditions
to observe its behavior with regard to frequency and amplitude of
stressing at 15009F. The base line data indicating the static
crecp and rupture characteristics of this alloy are summarized in
Table 17, Cyclic data determined at 1500°F for the + 25 and 67%
stress amplitude series applied at test frequencies of 11,5, 115,
3600, and 1L, L00 cycles per minute are presented in Tables 18
through 21, Graphical representations of the cyclic stressing
characteristics and comparisons with static behaviors are illus=-
trated in Figures 18 and 19 as mean stress-time curves at several
levels of total deformation and rupture to indicate the effect of
stressing frequency on the high~temperature properties of type
321 stainless steel.

The extent to which the 1500°F cyslic deformation and rupture
characteristics of the stainless steel alloy depend upon stress
amplitude is clearly demonstrated in Figure 20 which represents
the combinations of static mean tensile stress and altermating
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tensile stress required to produce definite amounts of total defor=~
mation and rupture at the 20 and 100-hour time levels for the in-
dicated frequencies of stress cycle applications,

Consistent with the manner of presenting the data for N-155
and Inconel X, the individual and combined influences of the cyclic
stress variables on the 1500°F rupture behavior of 321 stainless
steel can be expressed as a ratio of cyclic mean rupture stress
to static rupture stress for rupture times up to 500 hours as
compiled in Table 5 presented below,

TABLE 5

MEAN STRESS RATIOS TO PRODUCE RUPTURE OF TYPE 321
STAINIESS STEEL UNDER CYCLIC LOAD AS COMPARED TO STATIC LOAD

Ratio Cyclic Mean Rupture Stress

Cyclic Stress to Static Rupture Stress
Temp. Amplitude Frequency 10 20 50 100 200 500
oF % CPM Hours Hours Hours Hours Hours Hours
11,5  0.91 0,89 0.8L 0,81 0.76 07T
£25 1ns 1,10 1,06 1,00 1,02 1,04 1.10
3,600 1,07 1,03 0,96 1,02 1,04 1.22
1500 14, 100 0,91 0.88 0.8, 0.8
115 0,87 0,8 0,85 0,88 0,08 0,92
1, 400 0.72 0,78 0.85 0,82 0,72

*Ratio calculated from extrapolated stress values.

Through the range of rupture times involved, the ratios show
that both slow and rapid cycling of the + 25% stress amplitude
results in rupture acceleration while the intermediate stressing
frequencies of 115 and 3600 cycles per minute impart a delayed rup-
ture effect., Under the influence of the + 67% cyclic stress compo-
nent however, with the exception of the 3600 cpm short-time behavior,
rupture seems to be promoted regardless of stressing frequency.

The 15000F data summarized in terms of stress and cycles to
failure are compiled in Table 22. Graphical illustrations of the
rupture characteristics on the basis of maximum stress and stress
cycles applied are presented as S-N curves in Figure 21 for the
entire frequency range from 11,5 to 14,400 cycles per minute.
While the curves show that rupture for this alloy is primarily
dependent upon time, the tendency of the 3600 and 1L,L00 cpm curves
to converge at low stress values suggests a transition from time
dependent to cyclic dependent failure,

WAIC TR 55=~226 12
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DISCUSSION OF RESULTS

At very low frequencies of cyclic stressing, it might be expected
that an average or effective creep rate could be calculated by intew
grating the characteristic creep rates between the limits of minimum
and maximum stress in the cycle. Such procedure was followed by
Manjoine (L) for pulsating stresses superimposed upon various mean
stresses at 1200 cycles per minute for 1LS~T aluminum in the temper-
ature range of LOOOF, Under the conditions of testing, the measured
rate of creep deformation was less than the rate determined by the
calculation. These results, however, are not surprising, since in-
vestigations dealing with the effects of dynamic loads on the defor-
mation properties of metals have shown that major changes can be pro-
duced over a range of strain rate,

As early as 190L, the influence of rapid loading on ultimate
strength and plastic yielding was observed by Hopkinson (7) who found
that iron and copper wires rapidly loaded in tension could be stressed
beyond their static fracture stresses without exhibiting plastic yield-
ing, More recently Clark (8), by means of tension-impact studies, has
demonstrated that metals may take on entirely different strength and
deformation characteristics depending on impact velocity. These find~
ings are particularly significant because they illustrate the existence
of dynamic as well as static stress-strain curves and the importance
of the time element in the deformation process,

In tests where a metal is subjected to direct positive stressing
such as encountered in pull-pull tests, the frequency of the applied
cyclic stress as well as its amplitude will control the dynamic load-
ing rate which the metal experiences during each cycles At low tem-
peratures, such application of cyclic stress usually leads to a type
of failure termed "fatigue" which is considered to be a cyclic-
dependent phenomenon although it has been shown that the rate of
stress cycling will alter the stress vse, cycles to failure relation-
ships of metals, particularly at high stress levels (9). If under
similar cyclic stress conditions, metals are exposed to elevated tem-
peratures, then progressive damage and ultimate failure will occur
by creep, fatigue or a combination of both,

For the particular load boundaries of concern in this study,
wherein a continuously fluctuating tensile load exists, the time-
dependent phenomena controlling the plastic flow damage have been
found to be the predominating factors in determining failure time.
This is true not only because of the contimuous creep that might be
considered to be associated with a net effective tensile stress but
also because of the time-dependent plastic flow that accumulates
during each load cycles The latter portion of the total creep damage

WAIC TR 55-226 13
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generated by the individual stress cycles would be expected to be
related to the frequency of the fluctuating load component inasmuch
as this variable regulates the time for plastic flow to initiate
or accumulate during each cycle,

Results obtained under the present investigation have permitted
some correlations to be made of the cyclic stress variables with
failure life and rate of creep for the test alloys at elevated teme
peratures, Figures 22 and 23 attempt to illustrate schematically
the trend of these results and suggest the likelihood of a dual
mechanism varying in intensity for promoting failure over the full
frequency spectrum. At low frequencies, creep, under the combined
static and fluctuating loads is relatively rapid but decreases as
frequency is increaseds This behavior is to be expected, not only
on the basis of the dynamic stress-strain behaviors of metals, but
also, because less time becomes available in a single cycle for the
initiation of metal flow or slip. Extending this reasoning to even
higher frequencies, it might be expected that the rate of creep
deformation would diminish to a value characteristic of the minimum
stress in the cycle.

At sufficiently high frequencies, accelerated failure, accom-
panied by rapid creep deformation has been encountered, It is quite
likely that the damaging mechanism associated with this high fre-
quency effect is a cycle-dependent one, since only at these high
frequencies of stressing are adequate numbers of cycles accumlated
in the times under consideration to make its influence apparent.
However, the cycle-dependent damage affect, regardless of its basic
nature, manifests itself as accelerated creep, These same general
trends which have been defined in reference to Figure 22 may be
applied to the failure time vs. frequency chart presented in Figure
23,

It can be further reasoned that the schematic curves illustrated
in Figures 22 and 23 will be displaced either to the right or left
along the frequency axis as temperature is raised or lowered respec=-
tively, With increases in temperature, creep occurs at faster rates
necessitating faster stressing frequencies to suppress the creep de-
formation to that characteristic of the minimum stress in the cycle.
In addition, it is quite likely that amplitude increases could shift
the cycle-dependent high frequency end of the curve to the left as
a consequence of intensifying the c¢ycle~dependent damage imparted
in each cycle.

In keeping with the analysis which has been advanced as an
explanation to account for the effects on creep and rupture
associated with the variables of high-temperature cyclic stressing,
Figures 2 through 28 have been prepared, from actual test data on
the test alloys, to illustrate deformation and rupture times as a
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function of stressing frequency. It becomes immediately apparent
from these relationships, particularly for N-155 and type 321
stainless steel, that optimum frequencies of stressing exist for
which the combined portions of time-dependent and cycle-dependent
damage are a minirmm, and for which the alloys exhibit their
greatest resistances to flow and rupture, Thus, to cite a specific
case for rupture of N-155 at 15000F, it is seen from Figure 25 that
a cyclic stress, with amplitude of 25% of the mean stress, prolongs
the rupture life, relative to the static mean stress life in the
frequency range of 30 to 7000 cycles per minute. At frequencies
lower than 30 cpm, the rupture time would be expected to decrease to
a value characteristic of the static rupture time associated with
the maximum stress in the cycle. At frequencies higher than 7000
cpm, rupture time is dropping rapidly as a result of the predominant
cycle-dependent damages

The results obtained for Inconel X, as shown in Figures 26
and 27, indicate that significant cyclic-dependent damage has not
occurred for the conditions shown even at the highest frequency of
cyclic load investigated. For this alloy at 1350 and 15000F, a
wider range of frequency would have to be investigated in order to
display the dome~shaped trend of rupture time versus frequency.

Associated with the delayed and accelerated creep and rupture
effects displayed by the cyclically loaded test alloys, certain
generalizations presemt themselves regarding ductility as deter-
mined by rupture elongation. Inasmuch as stress and time constitute
the important factors regulating high-temperature ductility, one or
the other of these variables is best applied as a basis by which

_ductilities under static and cyclic load conditions may be compared,

For various mean stress values, the effects induced by the frequency
of cyclic stressing for the + 25 and 67% stress amplitudes on the
test alloys at 1350 and 1500°F are illustrated in Figures 29 through
3L. Under the influence of the + 25 and 67% cyclic stress components,
various trends in rupture ductility appear to exist at the 1350 and
1500°F temperature levels. For the + 25% amplitude condition, for
example, N-155 at the low end of the frequency spectrum and 1500°F
experiences a loss in ductility relative to that characteristic of
mean static stress, Rupture elongation appears to be gradually
restored and eventually slightly exceeds the static ductility as
stressing frequency is increased, On the other hand, type 321
stainless steel for both the + 25 and 67% amplitude series at 15000F
exhibits a trend toward improved ductility at the low and high ends
of the frequency scale but normal ductility at intermediate fre-
quencies. N-155 exposed to the + 25% cyclic stress at 1350°F dis-
plays a gradual reduction in ductility with increasing frequency
while ductility of Inconel X under similar conditions of stressing at
1350 and 15009F is essentially unaffected up to the 3600 cpm level
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but is reduced thereafter. Both N-155 and Inconel X exposed to the
+ 67% cyclic stress component display reduced rupture ductilities in
the entire frequency range at 1350 and 15000F,

With the exception of the + 67% series of tests which in general
show accelerated damage and rupture with corresponding losses in
ductility, it appears that for those conditions of stressing where
delayed rupture has been observed, the test alloys exhibit reduced
ductilities which may be indicative of the existence of a cyclic-
dependent mechanism in promoting rupture.

From the results obtained to date, no evidence is available
to account for the accelerated creep and decreased rupture time
resulting from cyclic tensile stresses of relatively high frequency.
No difficulty was encountered in controlling the temperature of the
sheet test specimens as indicated by the insulated thermocouples
attached to their surface. If internal heating were significant
then accelerated creep behavior should have been demonstrated by the
Inconel X at the 1,400 cpm frequency. Although metallographic dif-
ferences were not noticeable between statically and dynamically loaded
creep test specimens, it is possible that microstructural instabilities
are responsible for the cycle-dependent creep and rupture behavior
noted for the high frequency load condition,.
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SUMMARY AND CONCLUSIONS

The equipment designed for high-temperature creep-rupture study
under dynamic stressing provides a very suitable method of
evaluating the effects of fluctuating tensile stresses over a
range of frequencies and cyclic stress amplitudes. For low
frequency tests (11l.5 and 115 cycles per minute) conventional
lever-type tensile-creep machines were modified to accommodate
the superposition of a cyclic stress on the test specimen
through a spring actuated by a motor driven eccentric, High
frequency tests employed an electromagnetic vibrator driving

a tuned mechanical system to develop the desired cyclic stress
conditions. Both types of equipment incorporated load control
and load measuring instrumentation to permit desired stress
patterns to be maintained over long periods of time,

The effects of frequency and amplitude of cyclic stressing at
constant temperature were demonstrated by presenting a series
of mean stress-time curves for varying frequency at fixed stress
amplitude and mean stress-alternating stress curves at fixed
frequencies which can be compared with suitable static creep-
rupture characteristics,

On the basis of the results obtained for the three test alloys
subjected to cyclic loads at constant temperature, a variety

of creep-rupture behaviors exists ranging from pronounced accel-
eration in creep and rupture to delayed creep and rupture,
depending upon the magnitude of the mean load and stress ampli-
tude and frequency of the cyclically applied load,

When superimposed cyclic stresses are applied at rates of 115
and 3600 cycles per minute, it is observed that a superimposed
+ 25% stress amplitude has no appreciable effect on the static
creep rupture behavior of low carbon N-155 at 1350°F. At 1500°F
there is a delay in rupture induced by the + 25%¢ stress ampli-
tude for this alloy.

Under the influence of the + 25% cyclic stress amplitude super-
imposed at the 115 and 3600 cycle per mimute frequencies,
Inconel X does not appear to be affected in its static creep
and rupture behavior at either the 1350 or 15009F temperature
levels,

Cyclic stress components of + 25% applied at frequencies of
115 and 3600 cycles per minute on type 321 stainless steel

resu%; in improvements in rupture behavior of the alloy at

1500°F,
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For N-155 at 1350 and 1500°F and type 321 stainless steel at
15009F there is an accelerated damage generated by the super-
position of the + 25¢% cyclic component at test frequencies of
11.5 and 1L,LO0 cycles per minute, The amount of damage tends
to become more pronounced at low stress values and long test
timese

Through the entire range of frequencies, there is in general,
accelerated rupture associated with the test alloys for the
superposition of + 67% cyclic stress amplitudes at the 1350

and 15000F temperature levels, Inconel X at 1350°F for shorter
times to rupture or high stresses shows a tendency to retard
rupture under the action of the x 67% cyclic component at 3600
cycles per minute.

Because of the variety of effects which can be induced by cyclic
stressing on the high-temperature creep and rupture properties
of alloys, it appears that limiting stress values for use in
design cannot be assigned to members undergoing vibratory type
loading on the basis of data determined under static conditions.
Instead, it seems that the effects on creep and rupture must be
well defined for the specific conditions of cyclic stress ampli-
tude and stressing frequency, and these results used for guid-
ance in the assigmment of stress values.

The high-temperature creep and fracture behavior of metals sube
jected to cyclic loads superimposed upon mean tensile loads,

is influenced by two distinguishable mechanisms whose relative
importance varies with the frequency of the dynamic load com-
ponent. At low frequencies, creep rates and rupture times
approach those values characteristic of the maximum stresses
in the cycle while as frequency increases creep and rupture
behavior approach asymptotically that equivalent to the minimum
stress in the cycle. At the high frequency end of the scale

an additional cycle-dependent damage effect occurs which accel-
erates failure,

The superposition of cyclic stress upon static tensile stress
can induce a variety of rupture ductility effects at elevated
temperatures, The test alloys, except for type 321 stainless
steel which is essentially unaffected in its rupture elongation,
show a trend of reduced ductility associated with the super-
position of a + 67% cyclic component and increasing frequency.
Under the influence of a & 25% cyclic component, trends ranging
from reduced to improved ductility have been observed depending
on the type of alloy, test temperature and frequency of the
superimposed cyclic stress,
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EXTENSOMETER

24 GAGE CHROMEL-
ALUMEL INSULATED
THERMOCOUPLES

NICHROME WiIRE AND
ASBESTOS STRING

*+———————TEST SPECIMEN

A-7 SR-4 GAGES

GAGE SHIELD*}

EXTENSOMETER
RETAINING SPRING

CABLE

FIGURE | SPECIMEN - EXTENSOMETER- THERMOCOUPLE ASSEMBLY
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Figured SIRESS-TIME RELATIONSHIPS OF ANNEALED LOW CARBON N-155 SHEET
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